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ABSTRACT 

 

A task of automated system control design with non-

stationary plant and stochastic signals is observed.  A 

traditional approach suggests permanent and 

simultaneous adoption of neural networks used for 

control and identification that leads to extra expenses 

and loss of control quality. 

At the same time in case of rare change of 

characteristics of the plant it seems reasonable to 

activate adoption algorithms only if meaningful 

change of the plant was detected.  To detect such 

change there is a well-known statistical algorithm of 

cumulative sums.  Proposed modified approach can 

decrease expenses of routine system functioning 

during periods when plant is approximately stationary. 

It’s needed to perform comparative experiments to 

reveal advantages and disadvantages of both 

approaches.  Results will allow to estimate specific 

behavior and to provide recommendations for 

application of both methods. 

 

Index terms – Neural network, optimal control 

system, non-stationary object, cumulative sum. 

1. INTRODUCTION 

A very actual task in technical systems is an 

automated control of a plant with non-constant 

dynamic characteristics which can be changed in 

arbitrary moment and can’t be predicted in advance.  

A cause of non-stationary plant behavior may be as 

well spontaneous technical object change (due to 

wear, for example) as external conditions influence to 

the processes in the system (season and weather, for 

example). 

Change of dynamic parameters of the plant with 

constant parameters of controller usually leads to 

worse control quality.  To avoid decrease of control 

quality and related losses which can be represented as 

descent of economical efficiency one needs to adopt 

controller according to new conditions.  It’s 

technologically convenient and reliable to solve this 

task automatically instead of drawing in a human as an 

operator of control system. 

Let’s observe a task of neural network control of 

non-stationary plant in stochastic conditions.  The last 

term means the reference signal and noise are 

suggested as stochastic processes in discrete time.  We 

will consider also that change of plant parameters are 

rare enough to have long period of steady plant 

parameters.  The change of parameters is suggested as 

very fast, stepped manner.  So, neural network of the 

controller (NN-C) is to be tuned to decrease control 

error. 

In computational experiments linear plant models 

were used, but described methods themselves do not 

imply plant linearity. 

2. PERMANENT ADOPTION APPROACH 

The most commonly used solution of the posed task is 

permanent tuning of neural network of the controller 

to adopt to any possible changes.  In this case the 

neural network will follow change of dynamic 

characteristics of the plant as well.  Such mode of 

system control evidently causes extra expenses when 

changes is not taking place.  Also this may decrease 

general control quality due to inevitable stochastic 

signals fluctuation. 

Such approach may be implemented on the basis of 

neural network control algorithms which use direct or 

indirect inversion of the plant [1].  Let’s realize 

traditional neural network controller for non-

stationary plant by extending algorithm of indirect 

adaptive control [2] appropriately. 

Indirect adaptive neural network control requires a 

special neural network for plant identification (NN-P) 

which should be tuned in advance to behave as well as 

the object of control — plant.  This plant-equal 

behavior is used to train neural network controller by 

implementing online estimation of plant’s Jacobian.  

In case of steady plant parameters a neural network 

identification as a process of NN-P training may be 

performed once.  After training NN-P is ready to 

predict plant output in feed-forward mode and 

estimate Jacobian in back-propagation mode. 

But if dynamic characteristics of the plant become 

changed then the neural network plant modeling and 

Jacobian estimation become wrong therefore 

identification has to be performed again to adopt new 

plant parameters.  The controller may be trained 

simultaneously with the neural net plant identification.  

So, in case of permanent activity of adoption 

algorithm both neural networks NN-C and NN-P are 

in state of training.  The schema of control system 

with permanent neural networks adoption is shown on 

fig. 1. 
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Figure 1 Control system with permanent neural 

networks adoption 

 
External input signals of the control system are 

reference signal r and noise n in the observable output 

of the plant.  Neural network controller (NN-C) 

influences the plant by signal u aimed to minimize 

control error e=r–y.  In parallel to the plant a neural 

network identification model (NN-P) operates.  It 

predicts plant observation output at next time (ŷ) using 

several delayed values of controller influence signal u 

and previously observed outputs of the plant y. 

Two neural network training algorithms are 

activated simultaneously: direct training of neural 

network identification model and indirect training of 

neural network controller which uses also current state 

of neural identification model.  NN-P training is based 

on identification error y–ŷ and is aimed to its 

minimization.  Indirect NN-C training procedure 

inputs control error e and propagates it through NN-P 

in reverse direction.  In case of good matching 

identification model to the plant a desired value of 

control influence will be produced on the u input of 

NN-P.  Further back propagation of error will train 

NN-C to this desired value.  Directions of back 

propagation process are marked on fig. 1 by dashed 

lines with arrows. 

The method uses feed-forward neural networks 

without internal or external feedback with sigmoid 

activation function in neurons.  For better modeling of 

plant dynamics several delayed inputs u and y from 

the past are inputted by NN-P.  Maximum length of 

delay for u and y is marked as Du and Dy accordingly.  

For the same reason neural controller has not only 

control error e on the input but reference signal r also. 

Structure of neural network controller and 

identification model is represented on fig. 2. 
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Figure 2 Structure of neural networks 

 

Two important notes about described method must 

be emphasized especially.  The first, during indirect 

NN-C training the control error is propagated in 

reverse direction through NN-P with delta weights 

calculation but not application.  This is done just 

because the task of control error minimization must be 

solved by neural controller, but not by identification 

model.  So, only weight coefficients of NN-C are 

changed during its training.  The second, the training 

of identification model is performed simultaneously 

and independently.  This means that application of 

weight coefficients change is used by NN-C training 

immediately. 

3. MODIFIED APPROACH 

The schema of control system in modified approach 

also has two neural networks: controller and 

identification model.  In opposite to traditional 

method in stationary plant conditions it does not imply 

any changes in neural networks at all.  Additional 

block of the control system is used for plant 

parameters change detection (fig. 3).  After the change 

was detected some data are gathered and neural 

network identification model is trained on that data 

out of the control system loop.  After the NN-P 

training it is placed into the control loop and the 

whole system is switched to NN-C adoption mode 

where NN-P is used the same manner as in traditional 

approach (fig. 4).  It should be noted that structure of 

used neural networks are completely the same in both 

methods: traditional and modified. (fig. 2). 

For correct functioning of described schema a 

reliable algorithm of plant parameters change detect 

should be implemented and proper data gathering is to 

be performed to train neural network identification 

model. 

 

 
Figure 3 Modified approach to control in steady state 

 

 
Figure 4 Modified approach in adoption state 

 

The first subtask can be solved with help of 

cumulative sum algorithm.  For more reliable change 

detection the double alarm event during pre-calculated 

time range is considered as true alarm.  The second 

task is solved from the point of view that neural 

network is a general approximation of some unknown 

function which is defined empirically by the table of 

observed points.  Let’s go further for details. 
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3.1. Cumulative sum method 

Algorithm of cumulative sum for disorder detection is 

to be tuned to provide required efficiency.  It’s well 

known that the main control parameter of classic 

cumulative sum method is a threshold H, and its main 

characteristics —average time of alarm delay Tad and 

average time between false alarms Tfa.  Considering 

given task they define the time when control system 

will have losses due to change of plant parameters and 

inevitable increase of control error. 

Cumulative sum method detects change of some 

control parameter of the stochastic process as a ratio 

of its current value to the nominal one which was 

determined in steady state of the process.  So, for 

cumulative sum algorithm setup one needs to select 

process parameter to control, its steady state value 

which is nominal one and the value of this parameter 

considered as meaningful change (so called, nominal 

disorder).  A threshold should be selected also to 

provide desired values of Tad and Tfa. 

Preliminary experiments revealed that good 

disorder detection caused by change of plant 

parameters is provided by variance of identification 

error y-ŷ.  The nominal variance is calculated when 

plant is stationary.  The nominal disorder is an 

increase of variance in selected number of times (two 

times, for example) relatively to nominal value.  

Several experiments may show which level of nominal 

disorder affects control error significantly in exact 

control system. 

The proper choice of threshold H may be result of 

compromise between desired values of Tad and Tfa.  

The faster alarm (lesser Tad) means faster start of 

neural network identification model training and 

therefore faster start of neural controller adoption.  

However, for the same threshold value this means 

lesser time between false alarms (Tfa), so some 

random noise fluctuation may be solved as plant 

parameters change and an expensive adoption 

procedure will be executed. 

For more reliable disorder detection it’s suggested 

to run atomic check procedure of cumulative sum 

algorithm yet another time after the first alarm.  If the 

second check procedure detected alarm not later than 

in 3Tad, then disorder is solved as detected for sure.  It 

should be understood that effective time of alarm 

delay is doubled. 

To make reasonable choice of threshold H it would 

be desirable to calculate Tad and Tfa for every H value, 

given nominal stochastic process and nominal 

disorder.  There is a reliable method [3] to obtain such 

characteristics for non-correlated stochastic processes 

based on their distribution parameters.  However 

computer simulation shows that the mentioned method 

does not give precise results in our case because 

observed identification error is stochastic but 

correlated value.  To calculate needed characteristics 

empirically a number of computation experiments 

were performed.  Their result was a relation between 

threshold H and characteristics Tad and Tfa (fig. 5, 6).  

These empirical dependencies was used in further 

experiments and highlight application of cumulative 

sum algorithm in neural network control system. 

 

 
Figure 5 Average time of alarm delay Tad (K is a ratio 

of changed to nominal variance) 

 

 
Figure 6 Average time between false alarms Tfa (K is 

a ratio of changed to nominal variance) 

 

After the change of plant parameters and training 

of both neural networks NN-P and NN-C a new setup 

of cumulative sum algorithm may be required, 

especially if variance of identification error in new 

steady period differs from previous one. 

3.2. Training data set gathering 

Data set gathering for NN-P training in this case has 

own specific features related to the length of data set 

N and the way it should be composed.  The standard 

approach suggests fixed length of training data set but 

it’s not optimal and not even reasonable.  The training 

of neural network identification model should be 

performed every time the disorder has been detected.  

Starting from this moment it can be considered that 

the control system is out of optimal mode and it’s 

highly desirable to minimize the time it lasts.  

However it’s evident that longer data set will provide 

the better training of neural network identification 

model and also neural network controller will be 

trained faster and better.  So, we need a method of the 

shortest reasonable training data set gathering. 
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It’s proposed to start training data set {uk}N and 

{yk}N gathering just at the beginning of the last 

successful check procedure of cumulative sum 

algorithm t0 until the signal of disorder detection at 

moment t1 (let’s designate length of this series M).  

Also we can add series of length M just before t0 

because that check procedure was also successful and 

it was true disorder detection as we found later, after 

the second check.  Since the length of t1-t0 is a 

stochastic value then the resulting data set will have 

random volume N=2M.  This length defines the 

minimal data set we can obtain from the past and can 

use to train neural network identification model 

immediately after disorder detection. 

However this length may be not enough for quality 

training if the range t1-t0 was too small.  It’s suggested 

to estimate two-dimension (u,y) distribution 

parameters and gather observed values uk,yk further to 

the data set to fill selected two dimension area with 

desired density.  For Gaussian distribution it is 

convenient to select target area of radius 3 around 

point with mean coordinates.  Since neural network 

training may be considered as fitting empirically 

described function then the better fill will provide the 

better fit of target function. 

Described algorithm allows to compose data set 

dynamically and to guarantee reliable neural network 

training to approximate unknown function.  In our 

case this unknown function predicts plant output and 

gathered data set is used to reveal its properties during 

NN-P training out of control system loop. 

4. EXPERIMENTS 

Both described methods were realized in computer 

simulation software specially designed for neural 

network control system modeling.  A number of 

simulation experiments were performed for 

investigation of general characteristics and control 

quality of neural control in both cases.  To estimate 

control quality two different criteria was used: mean 

squared error (MSE) which gives presentation of 

integral losses and standard distribution parameters 

which allow to reveal probability of dangerously large 

control error, sometimes leading to crash of technical 

system. 

4.1. Steady plant conditions 

In series of experiments with stationary plant the 

behavior of neural network control was examined in 

conditions when no actual adoption was needed. 

The traditional neural network controller with 

permanent adoption (PA) causes meaningful 

oscillations of control quality with the period ~2-

510
5
 time samples and amplitude from 0.05 to 6.  

This behavior can be clearly seen on the diagram of 

mean squared error of control (fig. 7). 

 

 
Figure 7 Mean squared errors for permanent 

adoption (PA) and modified approach (MA) in steady 

plant conditions 

 

A diagram of identification error also demonstrates 

oscillations since NN-P is trained simultaneously with 

NN-C.  However in general its diagram looks reversed 

to the control MSE diagraph.  Such specifics may 

mean that increasing quality of identification means 

better Jacobian estimation not every time.  Possibly, 

some level of identification quality is optimal and 

should not be improved further. 

Neural network controller in modified approach 

case (MA) demonstrates very small oscillations of 

control error around mean value 0.121. 

During experiments with statistical distribution 

properties determination it was found that control 

error was distributed by normal Gaussian law. (fig. 8). 

 

 
Figure 8 Distribution of control error in modified 

approach for steady plant conditions 

 

During permanent adoption of neural network 

controller it was found that statistical distribution was 

variable and in periods of the worst control quality the 

mean value of error differs from zero significantly.  

Diagrams of error distribution in two consequent time 

ranges and for the whole series are shown on fig. 9.  

One can see that during period of good control quality 

[0, 410
5
] (see fig. 7 also) the distribution is close to 

Gaussian, but in periods of bad control quality (for 

example, [410
5
, 810

5
]) the distribution is 

multimodal. 
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Figure 9 Distribution of control error in permanent 

adoption approach for steady plant conditions 
 

Statistical distribution properties are listed in tab.1. 
 

 Min Max Mean Variance 

Permanent 

adoption 
2.03 5.43 0.33 0.30 

Modified 

approach 
1.46 1.52 0.01 0.12 

Table 1 Control error distribution in steady plant 

conditions 

4.2. Plant change conditions 

In series of experiments with non-stationary plant 

its parameters were changed at time sample 500.  

Fig. 10 show diagrams of control MSE for three 

different control strategies: no adoption of NN-C at 

all, permanent adoption of both NN-C and NN-P and 

modified approach to neural networks adoption with 

use of cumulative sum disorder detection algorithm. 
 

 
Figure 10 Control MSE in plant change conditions 

 

Time samples when plant change occurred and 

NN-C adoption started in modified approach are 

marked by vertical lines and labeled accordingly.  

Permanent adoption method responds to plant change 

almost without delay and does not allow control MSE 

to be greater than 0.55.  However after some time of 

descent (~10
4
-10

5
 time samples) the control error 

starts to grow the same manner as it was observed in 

steady plant conditions (not shown on figure). 

Modified approach needs time to gather data for 

NN-P training.  In this experiment the length of data 

set was determined as 600 time samples.  During this 

time the control MSE reached level 0.6.  Let’s 

consider that NN-P training outside the control system 

loop was performed very fast and new NN-P was 

ready immediately after data set for its training was 

gathered.  Actually it depends on scale of control 

system time and performance of computer hardware 

available for NN-P training.  So, at the time sample 

1100 neural network controller started to be adopted 

with help of new NN-P.  To this time control MSE 

reached level 0.7 which is close to original NN-C 

without any adoption.  After beginning of the adoption 

control MSE started to descent and it was much faster 

than during permanent adoption. 

Statistical distribution properties are given in tab.2. 
 

 Min Max Mean Variance 

Permanent 

adoption 
12.31 3.62 5.23 10.51 

Modified 

approach 
1.98 2.00 0.01 0.46 

Table 2 Control error distribution in change plant 

conditions 

5. CONCLUSIONS 

Simulation experiments displayed key features of two 

observed approaches of neural network control.  

Unstable behavior of permanent adoption even while 

stationary plant control was highlighted.  But this 

method responds faster and provides better control 

error just after plant change. 

Modified approach in general looks more 

preferable because it supplies stability of control 

system and provides guarantee level of control quality 

when plant is stationary.  Specific features of the 

algorithm does not allow it to react on plant change 

immediately but the quality of out-of-loop NN-P 

training provides faster learning of neural network 

controller in the loop to adopt plant changes. 

It seems that prospective approach to non-

stationary neural network control should combine the 

best characteristics of both observed methods. 

6. REFERENCES 

[1] Sigeru Omatu, Marzuki Khalid and Rubiyah 

Yusof, Neuro-Control and its Applications, Springer-

Verlag, London, 1996. 
 

[2] Narendra K.S., Parthasarathy K., “Identification 

and control of dynamical systems using neural 

networks”, IEEE Trans. on Neural Networks, Vol. I, 

pp.4-27, 1990. 
 

[3] Filaretow G.F., Filatow A.S., “Methoden zur 

schnellsten Bestimmung des Momentes der Änderung 

der Charakteristik zufälliger Prozesse”, XXVII 

Internationales Wiss. Kollogwium, TH Ilmenau, 

pp.233-236, 1982. 

285




